Equation Embeddings

نویسندگان

  • Kriste Krstovski
  • David M. Blei
چکیده

We present an unsupervised approach for discovering semantic representations of mathematical equations. Equations are challenging to analyze because each is unique, or nearly unique. Our method, which we call equation embeddings, finds good representations of equations by using the representations of their surrounding words. We used equation embeddings to analyze four collections of scientific articles from the arXiv, covering four computer science domains (NLP, IR, AI, and ML) and ∼98.5k equations. Quantitatively, we found that equation embeddings provide better models when compared to existing word embedding approaches. Qualitatively, we found that equation embeddings provide coherent semantic representations of equations and can capture semantic similarity to other equations and to words.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homogeneous endpoint Besov space embeddings by Hausdorff capacity and heat equation ✩

Two embeddings of a homogeneous endpoint Besov space are established via the Hausdorff capacity and the heat equation. Meanwhile, a co-capacity formula and a trace inequality are derived from the Besov space. © 2006 Elsevier Inc. All rights reserved. MSC: primary 31, 42A, 46E, 47B, 53A

متن کامل

Hilbert Space Embeddings of POMDPs

A nonparametric approach for policy learning for POMDPs is proposed. The approach represents distributions over the states, observations, and actions as embeddings in feature spaces, which are reproducing kernel Hilbert spaces. Distributions over states given the observations are obtained by applying the kernel Bayes’ rule to these distribution embeddings. Policies and value functions are defin...

متن کامل

Best constants and minimizers for embeddings of second order Sobolev spaces

By considering the kernels of the first two traces, four different second order Sobolev spaces may be constructed. For these spaces, embeddings into Lebesgue spaces, the best embedding constant and the possible existence of minimizers are studied. The Euler equation corresponding to some of these minimization problems is a semilinear biharmonic equation with boundary conditions involving third ...

متن کامل

GENERALIZED HERMITE POLYNOMIALS OBTAINED BY EMBEDDINGS OF THE q-HEISENBERG ALGEBRA

Several ways to embed q-deformed versions of the Heisenberg algebra into the classical algebra itself are presented. By combination of those embeddings it becomes possible to transform between q-phase-space and q-oscillator realizations of the q-Heisenberg algebra. Using these embeddings the corresponding Schrödinger equation can be expressed by various difference equations. The solutions for t...

متن کامل

Labeling Subgraph Embeddings and Cordiality of Graphs

Let $G$ be a graph with vertex set $V(G)$ and edge set $E(G)$, a vertex labeling $f : V(G)rightarrow mathbb{Z}_2$ induces an edge labeling $ f^{+} : E(G)rightarrow mathbb{Z}_2$ defined by $f^{+}(xy) = f(x) + f(y)$, for each edge $ xyin E(G)$.  For each $i in mathbb{Z}_2$, let $ v_{f}(i)=|{u in V(G) : f(u) = i}|$ and $e_{f^+}(i)=|{xyin E(G) : f^{+}(xy) = i}|$. A vertex labeling $f$ of a graph $G...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018